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This study investigates the coupled modes, including coupled torsional–flexural vibration
and coupled longitudinal–flexural vibration, for non-rotating crankshafts which are
free–free suspended. The finite element models of those generally used are in two categories:
beam elements and solid elements. By using these two models the natural frequencies and
mode shapes of two crankshafts are determined by the finite element method (FEM) and
compared with experimental data from modal testing. The accuracy and validity of the
analytical approaches are verified. The results show that the solid element is more
appropriate than the beam element in the modal analysis of crankshafts.
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1. INTRODUCTION

Presently, the rotor–bearing systems utilized for modelling rotating machinery and their
mounting structures, for example, electric motors, turbomachinery, transmission shafts,
propellers, etc., are commonly analyzed by the finite element method. Computations of
natural frequencies, mode shapes, critical speeds, steady state responses, and transient
responses play important roles in the design, identification, diagnosis, and control of
rotor–bearing systems. Thus, an accurate prediction for the dynamic characteristics of a
rotor–bearing system using FEM is essential for modern equipment.

The finite element procedures developed for rotor–bearing systems are directed toward
generalizing and improving the shaft model proposed by Ruhl and Booker [1]. Nelson and
McVaugh [2], Zorzi and Nelson [3] utilized finite beam element models to formulate the
dynamic equation for a linear rotor system and determine the stability and steady state
responses. The beam formulations based primarily on Timoshenko’s assumptions have
been given by Thomas et al. [4]. O� zgüven and Özkan [5] and Nelson [6] further developed
the finite element model by including the effects of rotary inertia, gyroscopic moments,
shear deformation, and internal damping. Tapered beam elements have been developed
by Rouch and Kao [7] and Greenhill et al. [8] to model a linearly varying diameter along
the beam length. Stability and steady state responses of asymmetric rotors with a flexible
shaft have been studied by Genta [9]. The effects of both deviatoric inertia and stiffness
due to an asymmetric shaft and disk have been studied by the finite element method in
research by Kang et al. [10].
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Moreover, many mechanical systems such as turbine blades, aircraft propellers, robot
arms and engine crankshafts, which are perpendicular to a rotating axis, can be modelled
by a radial rotating beam element. Nagaraj and Shanthakumar [11] used the Galerkin
method, together with an eighth-order polynomial, for solving a problem concerning a
rotating beam without a hub. Putter and Manor [12] presented a six-degree-of-freedom
element for a rotating radial cantilever beam to allow inclusion of a shroud mass. Hoa
[13] presented a finite element formulation for a uniform rotating beam with a tip mass.
Khulief and Yi [14] developed a finite element formulation representing the vibrational
response of a uniform rotating beam with a tip mass during flapping and lead–lag motion.
Their formulation accounts for the centrifugal force field and centripetal acceleration
effects. Yokoyama [15] developed a finite element procedure for determining the free
vibration characteristics of rotating uniform Timoshenko beams. The effects of hub radius,
setting angle, shear deformation, and rotary inertia on the natural frequencies of the

Figure 1. Crankshaft of an in-line four-cylinder engine; (a) spatial view and arrangement of measurement
points and excitation points, U—— excitation point; W——, measurement point; (b) dimension details (in mm).



25

–56

F
re

qu
en

cy
re

sp
on

se
 (

d
B

) (a)

180

–180
1

0

P
h

as
e 

(°
)

25

–56

(b)

1.5k
Frequency (Hz)

0.75k

1

0

C
oh

er
en

ce
C

oh
er

en
ce

F
re

qu
en

cy
re

sp
on

se
 (

d
B

)

180

–180

P
h

as
e 

(°
)

  415

rotation beams have been examined. Magari et al. [16] developed a rotating blade finite
element with coupled bending and torsion. Khulief [17] derived explicit expressions for the
finite element mass and stiffness matrices using a consistent mass formulation for the
vibration of a rotating tapered beam. Bazoune and Khulief [18] developed a finite element
for vibration analysis of rotating tapered Timoshenko beams.

Bagci and Rajavenkateswaran [19] utilized a spatial finite line element method in
an analysis of rotors, including crankshafts. Smaili and Khetawat [20] proposed a
spatial four-node beam element based on Timoshenko’s theory for the modelling of
crankshafts.

Figure 2. Examples of modal testing for a four-cylinder crankshaft (a) excitation at point z1 in the z- direction,
and measurement at point y9; (b) excitation at point y9 in the y-direction, and measurement at point x11.
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Geradin and Kill [21] derived a three-dimensional finite element for modelling flexible
rotors, because it produces good estimation in stepped and tapered shaft analyses.
Stephenson et al. [22] showed an excellent agreement between the measured frequencies
and the frequencies calculated by using an axisymmetric solid finite element model.
Stephenson and Rouch [23] presented axisymmetric solid finite elements with matrix
reduction in modelling a rotating shaft.

The complex spatial nature of engine crankshafts makes the solid element approach an
attractive one for determining their coupled flexural, torsional, and longitudinal vibration
modes. This study models practical crankshafts by using both a tetrahedron element and
a beam element and compares the analytical results with data from modal testing. For
comparing the analytical results with experimental data, two crankshafts from a
four-cylinder in-line engine and a six-cylinder V-shaped engine are used. The comparison
shows that the eigensolutions for crankshafts with a beam element model are not favorably
compatible with the modal testing results. Not only are some important modes lost in the
analytical results, but also the corresponding frequencies are quite different from the modal
testing ones. Although the time consumption is vast for modelling and computation, the
results obtained from solid element models perform favorably in being consistent with the
experimental data.

Figure 3. Natural frequencies and mode shapes for the crankshaft of a four-cylinder engine shown in Figure 1.
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2. MODAL TESTING

A crankshaft of a four-cylinder in-line engine is utilized for testing, as shown in Figure 1,
in which the exciting points and measuring points are indicated by the symbols T and
W, respectively. The crankshaft is suspended with rubber bands to simulate free–free
boundary conditions for modal testing. Exciting the crankshaft with an impactor or
hammer at all impact points and measuring the responses of all measuring points, one
obtains the transfer function of the crankshaft by means of the FFT analyzer (HP3566A).

Figure 4. Spatial view and dimension details of a V6-cylinder crankshaft; (a) arrangement of measurement
and excitation points; (b) dimension details (mm); (c) spatial view.
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Two spectra of frequency responses from this crankshaft are shown in Figures 2(a) and
2(b).

From the spectra, the natural frequencies of the first eight modes, which occur at
355·31 Hz, 489·98 Hz, 783·16 Hz, 809·97 Hz, 935·70 Hz, 1120·0 Hz, 1370·0 Hz, and
1410·0 Hz and correspond to each of the peaks shown in Figures 2(a) and 2(b) can be
observed. By using analyses from the SIMO technique, one obtains more shapes of the
crankshaft, shown in Figure 3. Actually, the vibrations of each of the modes in x, y, z,
ux , uy , uz are all coupled with longitudinal, torsional, and flexural vibrations. Each mode
can be categorized into its prevailing vibrations as: first and second modes caused by
flexural vibration in two principal axes; third, fourth and sixth modes caused by coupled

Figure 5. Examples of modal testing for a six-cylinder crankshaft (a) excitation at point z7 in the z direction,
and measurement at point y1; (b) excitation at point x19 in the x direction, and measurement at point y1.
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Figure 6. Natural frequencies and mode shapes for the crankshaft of a V6 engine in Figure 4.

longitudinal–flexural vibration; fifth, seventh and eight modes caused by coupled torsional
and flexural vibrations. In each mode the longitudinal vibrations are the displacements of
cranks and counterbalances (in the axial direction z); the flexural vibrations are the lateral
displacements (in directions x or y) or the angular displacements (in directions uy or ux )
of the connecting pins and journals; the torsional vibrations are the angular displacements
of connecting pins (in the rotating axis uz ).

Another crankshaft from a six-cylinder V-shaped engine, shown in Figure 4, is tested
for further verification, in which the exciting points and measuring points are indicated
by the symbols T and W respectively. With the same instruments and process, one obtains

Figure 7. Volume co-ordinates for a tetrahedron. v1, P234; v2, P341; v3, P412; v4, P123.
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Figure 8. 2-node 3D space beam element.

the transfer function. Figures 5(a) and 5(b) show the two frequency responses from the
same measuring point with excitation at two different typical points. From these figures,
one obtains the natural frequencies of the first eight modes, which are 347·74 Hz,
359·43 Hz, 649·60 Hz, 783·34 Hz, 979·34 Hz, 1030·0 Hz, 1050·0 Hz, and 1090·0 Hz,
individually. By using the data from the FFT analyzer, the mode shapes of this crankshaft
are obtained and shown in Figure 6.

3. COMPUTATIONAL MODAL ANALYSES

The crankshafts are modelled with two approaches involving the solid elements and the
beam elements, respectively, but the internal damping is disregarded.The degrees of

Figure 9. Modelling of a four-cylinder crankshaft by beam elements (a) typical part (b) basic model (c)
modified model.
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T 1

Comparisons of natural frequencies obtained by using stiff beam modelling for the
four-cylinder crankshaft (Hz)

Mode Modal
Order Testing Model 1 Error (%) Model 2 Error (%) Model 3 Error (%)

1 355·31 201·98 43·15 201·26 43·36 362·70 2·08
2 489·98 496·15 1·26 903·03 84·30 955·26 94·96
3 783·16 449·05 42·67 500·57 36·08 838·93 7·12
4 809·97 – – – – – –
5 935·70 990·27 5·83 1259·6 34·62 2387·5 155·16
6 1120 654·37 41·57 1001·4 10·59 1257·8 12·30
7 1370 1385·8 1·15 2026·9 47·95 2870·2 109·50
8 1410 2116·3 50·09 2241·2 58·95 4628·6 228·27

freedom (DOF) of a tetrahedral element provided by the ANSYS library [24], as shown
in Figure 7, are defined by

{qe}=[u1, v1, w1, . . . , u4, v4, w4]T

Fig. 10(a–d)—Caption on p. 422
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where ui , vi and wi are node displacements in the Cartesian co-ordinates of the fixed
reference frame. For a beam element also provided by the ANSYS library, as shown in
Figure 8, the DOF are defined by

{qe}=[u1, v1, w1, ux1, uy1, uz1, u2, v2, w2, ux2, uy2, uz2]T

The motion equations of a free–free suspended crankshaft modelled by both of the two
previous elements in a fixed reference frame have a similar form as:

[M] {q̈}+[K] {q}= {0}

where [M] and [K] are constant matrices and {q} represents the DOF in the global system.
ANSYS offers six methods for mode extraction: subspace method, block Lanczos method,
reduced method, power dynamics method, unsymmetric method, damped method. The
first three methods are applicable to this study and described briefly in the following:

The generalized Jacobi iteration algorithm is used by the subspace method. This method
is typically used in cases where high accuracy is required because is uses the full [M] and
[K] matrices. However, the subspace method is slower than the reduced method.

The Lanczos recursion performed with a block of vectors is used by the block Lanczos
method. It is powerful when searching for eigenfrequencies.

The householder-bisection-inverse iteration is used by the reduced method to calculate
the eigenvalues and eigenvectors. It is relatively fast because it works with a small subset

Fig. 10(e–h)

Figure 10. Mode shapes of a four-cylinder crankshaft (analysis by using a solid model). Mode shapes: (a) mode
1; (b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5; (f) mode 6; (g) mode 7; (h) mode 8.
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T 2

Comparisons of natural frequencies obtained by using solid element modelling for the
four-cylinder crankshaft (Hz)

Reduced method
Subspace method Block Lanczos method (MDOF=100)

ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV
Mode Natural Natural Natural
Order frequency Error (%) frequency Error (%) frequency Error (%)

1 354·43 0·26 354·43 0·26 354·77 0·20
2 486·11 0·79 486·11 0·79 487·26 0·48
3 738·49 5·70 738·49 5·70 741·95 5·42
4 786·22 2·88 786·22 2·88 790·91 2·15
5 875·81 6·40 875·81 6·40 880·48 5·91
6 1062·1 3·76 1062·1 3·76 1073·6 3·94
7 1294·8 5·49 1294·8 5·49 1309·9 4·28
8 1334·0 5·39 1334·0 5·39 1352·1 3·92

of degrees of freedom called master degrees of freedom (MDOF). Using MDOF leads to
an exact [K] matrix but an approximate [M] matrix. The accuracy of the results, therefore,
depends on how well [M] is approximated, which in turn depends on the number and
location of MDOF. In the ANSYS package, it permits the user to select the MDOF, or
the program to select them automatically, or any combination of these two options. If the
structure has an irregular mass distribution, the automatically selected MDOF may be
concentrated totally in the high mass regions, in which case the manual selection of some
MDOF should be used. As the structure of crankshafts, the MDOF can be selected totally
by the ANSYS program itself with good predictions in result. Empirically, the number of
the MDOF should usually be at least equal to twice the number of modes of interest to
achieve a better approximate [M] matrix and avoid error predictions in higher modes.

3.1.     - 

The available literature on numerical analysis of crankshafts is mainly concerned with
modelling by beam elements. The advantages of modellng by beam elements include

T 3

Comparisons of natural frequencies obtained by using different number of master DOF
(MDOF) in reduced method (Hz)

Mode MDOF Error MDOF Error MDOF Error MDOF Error
Order 14 (%) 30 (%) 100 (%) 200 (%)

1 360·15 1·36 356·42 0·31 354·77 0·20 354·65 0·19
2 526·79 7·51 502·10 2·47 487·26 0·48 486·86 0·64
3 831·88 6·22 753·92 3·73 741·95 5·42 739·78 5·54
4 1066·6 31·68 808·56 0·17 790·91 2·15 789·13 2·57
5 1103·9 17·98 920·02 1·68 880·48 5·91 878·11 6·15
6 1881·0 67·95 1113·9 0·54 1073·6 3·94 1068·2 4·63
7 2943·2 114·8 1443·3 5·35 1309·9 4·28 1303·7 4·84
8 3643·7 158·4 1601·0 13·55 1352·1 3·92 1343·8 4·70

zXXXcXXXv zXXXcXXXv zXXXcXXXv zXXXcXXXv
Computer
time (min) 210 218 243 494
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greater ease in preprocessing, faster computation, and less computer memory. In this case,
the cranks and counterbalances are modelled by radial rotating beams; the journals are
modelled by spinning beams; the connecting pins are modelled by whirling beams. ANSYS
provides a taper beam element, Beam44, for the analysis of the aforementioned three types
of beams.

To simulate a practical crankshaft, three models are proposed for crankshaft modelling:
(1) the basic model: all segments of the crankshaft are considered as spatial beams and
the nodes of the beams are along the geometrical centers of the segments, as ilustrated in
Figure 9(a); and this model is simplified into a basic finite element model, shown in
Figure 9(b); (2) the first modified model: the stiffness of the cranks and the counterbalances
is considered as beam stiffness, while the inertia thereof is considered as asymmetric plates
of zero thickness, shown in Figure 9(c); the entities of the inertia matrix of an asymmetric
plate are presented in the report by Kang et al. [10]; (3) the second modified model: by
using stiffening beams to care for the ‘‘cross sections remain plane’’ condition of the
junctions of journals and connecting pins or the junctions of counterbalances and cranks
(Beams from Node 21 toward Node 29 or beams from Node 34 toward Node 42 in
Figure 9(a), for example). According to the theory proposed by Rao [25], the stiffness of
the beam elements which are close to the junctions of the cranks or counterbalances is
strengthened, as the elements of nodes 4–25, 37–46, 47–69, 57–78, 79–89 shown in
Figures 9(a)–9(c).

Fig. 11(a–d)—Caption on p. 425.
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Fig. 11(e–h).

Figure 11. Mode shapes of a six-cylinder crankshaft (analysis by using a solid model). Mode shapes: (a) mode
1; (b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5; (f) mode 6; (g) mode 7; (h) mode 8.

A four-cylinder crankshaft shown in Figure 1 is modelled by the proposed three models
and analyzed by using the ANSYS package, in which a counterbalance is meshed into 40
rotating beams and a crank is meshed into 29 rotating beams along the geometrical center
thereof; the journals and the connecting pins are modelled as spinning beams and whirling
beams respectively, according to the illustration of Figure 9(a). These models are analyzed
by using the subspace method in ANSYS package. The natural frequencies and mode

T 4

Comparisons of natural frequencies obtained from modal testing and
ANSYS analysis for the six-cylinder crankshaft (Hz)

Mode order Modal testing Subspace method Error (%)

1 347·74 357·94 2·93
2 359·43 366·41 1·94
3 649·60 657·46 1·21
4 783·34 766·78 2·11
5 979·34 904·50 7·64
6 1030 1035·4 0·52
7 1050 1077·9 2·66
8 1090 1167·1 7·07
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Figure 12. Error percentages of natural frequencies of numerical results: (a) four-cylinder crankshaft;
(b) six-cylinder crankshaft.

shapes of the first twenty modes are obtained and each mode shape has been checked
carefully with the mode shapes from the modal testing, shown in Table 1. The
Table indicates that the natural frequencies of the analytical results are very different from
the tested results. Also, the mode orders from analytical results are different from those
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of the tested results. Meanwhile, the fourth mode of the modal testing is not present in
all three analyses.

The same four-cylinder crankshaft is also analyzed by the ANSYS solid element,
Solid72, using the subspace, the block Lanczos and the reduced methods to extract the
first eight modes. The crankshaft is meshed automatically by the ANSYS package with
the element size from 0·02–0·005 m. In the reduced method, the number of master DOF
is set to 100 and the DOF are selected by the program itself. The mode shapes and mode
orders obtained from the three methods are very similar. Thus, mode shapes obtained from
the subspace method have been show in Figures 10(a)–10(h). Each illustration has the top
view and the front view to indicate the vibration displacements and the patterns of mode
shapes. These illustrations show a good correlation with the tested results. The differences
in the natural frequencies between experimental and analysis results are shown in Table 2.
Although the reduced method seems to have the best prediction, from this table, all the
three methods are very close in results. One does not conclude that the reduced method
has the most precise estimation, because some dimension details (such as forged segments
and lubrication vents) are neglected in the present modeling.

From the comparisons of Table 1 and Table 2, one may state that the beam theory is
probably not appropriate for crankshafts and the solid analyses have better predictions
than the beam analyses do.

Table 3 shows the mode frequency and computer times of different number of master
DOF in the reduced method, which indicates that the greater the number of master DOF
set, the more accurate the mode frequency obtained and more computer time required.
The number of master DOF (100) is a favorable selection in this case study, for the results
converge well and the computation time not much greater than that with a smaller number
of master DOF.

3.2.     - 

Another case of a six-cylinder crankshaft in a V-shaped engine, shown in Figure 4, is
analyzed by using the Solid72 model with the subspace method. The natural frequencies
and mode shapes of the first eight modes are shown in Figure 11. The shapes show that
the first mode is due to pure bending vibration, the fourth mode is due to coupled
torsional-lateral vibration, and the other six modes are due to coupled longitudinal–lateral
vibration. These analytical results are compatible with the mode shapes which were
determined by modal testing.

T 5

Computer times for the four-cylinder crankshaft

Computer time (min.)
ZXXXXXXXXXXCXXXXXXXXXXV

Block
Element Element Subspace Lanczos Reduced method
size (m) Node no. number method method (MDOF=100)

0·005 26851 119940 full disk 697 full disk
0·006 16876 72113 921 270 631
0·007 11285 46254 468 139 243
0·01 4998 18714 103 44 62
0·0125 3430 12220 51 27 31
0·015 2334 7942 31 24 24
0·0175 1913 6205 23 17 20
0·02 1501 4629 21 15 18
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T 6

Computer times for the six-cylinder crankshaft by using subspace method

Element size (m) Node no. Element no. Computer time (min)

0·006 18675 74935 1232
0·007 13520 53038 623
0·01 5718 19644 119
0·0125 4095 13631 76
0·015 2290 6797 28
0·0175 1979 5682 23
0·02 1604 4550 18

Comparing the natural frequencies of the numerical results with the experimental data,
shown in Table 4, a good correlation can be obtained, except for the fifth and eighth
modes, which have an error of about 7%.

4. COMPUTER TIME AND CONVERGENCE

A crankshaft analyzed by solid element models essentially involves the choice of element
size. If the element size is too large, it leads to a large error in the result. Contrarily, if
the element size is too small, it gives a very precise result but demands more computer
time and memory and may also cause a truncation error. By using the subspace method,
the influences of element size on the error percentage of the natural frequencies are
compared and shown in Figures 12(a) and 12(b) for the four-cylinder and six-cylinder
crankshafts respectively. From both figures, one observes that if the element size is reduced
to approximately 6 mm, the analytical results converge to the experimental results.
Tables 5 and 6 show the computation time for extracting the first twenty modes of the
two crankshafts in different element sizes using a Pentium586-166 personal computer with
96MB RAM and a 4GB HD. Table 5 indicates that the block Lanczos method is the most
efficient when mode extracting and the reduced method always takes less computer time
than the subspace method. Furthermore, the subspace method requires more disk space
and the reduced method is used to find only a few modes of larger models. However, the
accuracy of its frequencies depends on the master DOF selected.

5. CONCLUSIONS

The free vibration of a crankshaft is in a sophisticated form which includes
longitudinal–flexural vibrations, torsional–flexural vibrations, or vibrations coupled with
three of longitudinal, flexural and torsional together. It is difficult to simulate such
vibration characteristics using a beam element; however, the use of solid element modelling
in crankshaft analysis produces much better estimation results.

In this study two practical crankshafts, one a four-cylinder in-line and the other a
six-cylinder V-shaped, have been utilized for numerical analysis and modal testing; and
the results of the three modelling methods have been compared with the modal testing
results. When the crankshafts are modelled by beam elements, no agreement in natural
frequency estimations can be obtained. When the crankshafts are modelled by solid
elements, the first eight modes obtained have errors in natural frequencies within 3%,
except for a few which have about 5%.

In summary, the beam elements model is usable in analyses of most rotor–bearing
systems and radial rotating configurations, but it is not practical for a complex
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configuration of an engine crankshaft. Comparatively, the solid element model correlates
with the results of modal testing.
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